Profile cover photo
Du følger nu
Fejl under følg af bruger.
Denne bruger har ikke tilladt andre bruger at følge dem.
Du følger allerede denne bruger.
Din medlemsskabsplan tillader kun at følge 0. Opgrader her.
Du følger nu ikke længere
Kunne ikke stoppe med at følge bruger.
Du har nu anbefalet
Kunne ikke anbefale bruger.
Noget gik galt. Forny venligst siden og prøv igen.
Email verificeret.
Brug Avatar.
$50 USD / time
Flag for UNITED KINGDOM
nottingham, united kingdom
$50 USD / time
Det er i øjeblikket 8:44 PM her
Tilmeldt februar 2, 2018
2 Anbefalinger

Muhammad Uzair Z.

@uzairrzahid

annual-level-three.svg
verified.svg
4,9 (108 anmeldelser)
6,4
6,4
82%
82%
$50 USD / time
Flag for UNITED KINGDOM
nottingham, united kingdom
$50 USD / time
95 %
Jobs færdiggjort
85 %
Indenfor budgettet
84 %
Til tiden
23 %
Genansættelsesrate

ML | DL | AI | Python | MATLAB

As a Machine Learning and AI developer, I have a strong passion for technology and 5+ years of experience in delivering cutting-edge solutions to clients. My areas of expertise include neural networks, biomedical imaging, and other advanced machine learning techniques. In addition to my technical skills, I am also well-versed in web technologies and have a proven track record of problem-solving using various programming languages. My goal is always to exceed client expectations and ensure that their satisfaction is my top priority. If you are looking for a dedicated and skilled developer who can deliver desired outcomes, please do not hesitate to hire me.

Kontakt Muhammad Uzair Z. omkring dit job

Log ind for at diskutere detaljerne via chat.

Portefølje

Anmeldelser

Ændringer gemt
Viser 1 - 5 ud af 50+ anmeldelser
Filtrer anbefalinger ud fra:
5,0
€100,00 EUR
He handled that challenge like a true professional.
Python
Software Architecture
Machine Learning (ML)
Deep Learning
Brug Avatar.
Flag for Zrax H.
@marouenkadri24
1 år siden
5,0
€200,00 EUR
Nice work , on the time . in one word it's the best one .
Matlab and Mathematica
Algorithm
Electrical Engineering
Machine Learning (ML)
+1 mere
Brug Avatar.
Flag for Zrax H.
@marouenkadri24
1 år siden
5,0
€170,00 EUR
excellent work as usual
Matlab and Mathematica
Algorithm
Electrical Engineering
Machine Learning (ML)
+1 mere
Brug Avatar.
Flag for Zrax H.
@marouenkadri24
1 år siden
5,0
$300,00 AUD
Yet more repeat business with Muhammah. I'll be going straight back for more.
Matlab and Mathematica
Algorithm
Electrical Engineering
Machine Learning (ML)
Data Science
Brug Avatar.
Flag for Jacob A.
@mintgreenstrat
1 år siden
5,0
€100,00 EUR
Excellent work. Delivered exactly what I requested quickly and professionally.
Brug Avatar.
Flag for Zrax H.
@marouenkadri24
1 år siden

Erfaring

Senior Researcher

Qatar University
dec. 2019 - Nuværende
Working as a researcher in the field of Biomedical Imaging, Signal Processing, Machine Learning and Deep Learning.

Research Assistant

CE FAR LAB
jan. 2018 - Nuværende
I am working a project which involves object tracking and localization using live video feed from camera which will be used to help visually blind people.

Research Assistant

SIGMA LABS NUST (Research Lab for Signal Processing And Machine Learning)
apr. 2017 - sep. 2017 (5 måneder, 1 dag)
I was involved in development of a portable, remote respiratory and physical activity monitoring system.

Uddannelse

MS Electrical Engineering (Signal Processing and Machine Learning)

National University of Science and Technology, Pakistan 2016 - 2018
(2 år)

BS Telecom

University of Engineering and Technology, Taxila, Pakistan 2012 - 2016
(4 år)

Kvalifikationer

Neural Networks and Deep Learning

Coursera
2018

Publikationer

Global ECG Classification by Self-Operational Neural Networks with Feature Injection

IEEE Transactions on Biomedical Engineering
Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles.

Robust Peak Detection for Holter ECGs by Self-Organized Operational Neural Networks

IEEE Transactions on Neural Networks and Learning Systems
In this study, to further boost the peak detection performance along with an elegant computational efficiency, we propose 1D Self-Organized Operational Neural Networks (Self-ONNs) with generative neurons. The experimental results over the China Physiological Signal Challenge-2020 (CPSC) dataset show that the proposed 1D Self-ONNs can significantly surpass the state-of-the-art deep CNN with less computational complexity.

Robust R-Peak Detection in Low-Quality Holter ECGs using 1D Convolutional Neural Network

IEEE Transactions on Biomedical Engineering
In this study, a novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model. Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB, which is the best R-peak detection performance ever achieved. Results also demonstrate similar or better performance than most competing algorithms on MIT-DB with 99.83% F1-score, 99.85% recall, and 99.82% precision.

Kontakt Muhammad Uzair Z. omkring dit job

Log ind for at diskutere detaljerne via chat.

Verifikationer

Foretrukken Freelancer
Identitet verificeret
Betaling verificeret
Telefon verificeret
E-mail verificeret
Facebook forbundet

Certifikationer

preferredfreelancer-1.png Preferred Freelancer Program SLA 1 87%
us_eng_1.png US English 1 75%
Tidligere Bruger Næste bruger
Invitationen blev sendt!
Registrerede brugere Oprettede jobs i alt
Freelancer ® is a registered Trademark of Freelancer Technology Pty Limited (ACN 142 189 759)
Copyright © 2023 Freelancer Technology Pty Limited (ACN 142 189 759)
Indlæser forhåndsvisning
Geolokalisering er tilladt.
Din session er udløbet, og du er blevet logget ud. Log venligst ind igen.